
CS61B Spring 2024

Graphs, Heaps
Exam-Level 08



CS61B Spring 2024

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

3/13
Mid-semester 

Survey Due

3/15
Lab 8 Due

Project 2B/C 
Checkpoint and 
Design Doc Due
TRS 3 (11-1pm) 

3/18
Homework 3 Due

3/21
Midterm 2



CS61B Spring 2024

Content Review



CS61B Spring 2024

Trees, Revisited (and Formally Defined)

Trees are structures that follow a few basic rules:

1. If there are N nodes, there are N-1 edges

2. There is exactly 1 path from root to every other node

3. The above two rules means that trees are fully connected and contain no cycles

A parent node points towards its child.

The root of a tree is a node with no parent nodes.

A leaf of a tree is a node with no child nodes.



CS61B Spring 2024

Graphs

Trees are a specific kind of graph, which is more generally defined as below:

1. Graphs allow cycles

2. Simple graphs don’t allow parallel edges (2 or more edges connecting the same two nodes) or self 

edges (an edge from a vertex to itself)

3. Graphs may be directed or undirected (arrows vs. no arrows on edges)

Check! How would you describe each of these graphs (in terms of directedness and cycles)?



CS61B Spring 2024

Graph Representations

Adjacency lists list out all the nodes connected to each node in our graph:

A

B

C

D

E

F

A B , C

B E

C F

D B

E

F D



CS61B Spring 2024

Graph Representations

Adjacency matrices are true if there is a line going from node A to B and false otherwise.

A

B

C

D

E

F

A B C D E F

A 0 1 1 0 0 0

B 0 0 0 0 1 0

C 0 0 0 0 0 1

D 0 1 0 0 0 0

E 0 0 0 0 0 0

F 0 0 0 1 0 0



CS61B Spring 2024

Breadth First Search

Breadth first search means visiting nodes based off of their distance to the source, or starting point. For 

trees, this means visiting the nodes of a tree level by level. Breadth first search is one way of traversing a 

graph.

BFS is usually done using a queue.

A

B C

D E

BFS(G):
Add G.root to queue
While queue not empty:

Pop node from front of queue and visit
for each immediate neighbor of node:

Add neighbor to queue if not 
already visited



CS61B Spring 2024

Depth First Search

Post-order traversals visit the 
child nodes before visiting the 
parent nodes.*

Depth First Search means we visit each subtree (subgraph) in some order recursively. DFS is usually done 

using a stack. Note that for graphs more generally, it doesn’t really make sense to do in-order traversals.

In-order traversals visit the left 
child, then the parent, then 
the right child.

Pre-order traversals visit the 
parent node before visiting 
child nodes.*

A

B E

C D

D

B E

A C

E

C D

A B

* in binary trees, we visit the left child before right child



CS61B Spring 2024

General Graph DFS Pseudocode (Stack)

A

B

C

D

E

F

DFS(start):
stack = {start}, visited = {}
while stack not empty:

n = top node in stack
visited.add(n), preorder.add(n)
if n has unvisited neighbors:

push n’s next unvisited 
neighbor onto stack

else:
pop n off top of stack
postorder.add(n)

return preorder, postorder
 

Preorder: “Visit the node as soon 
as it enters the stack: myself, 
then all my children”

Postorder: “Visit the node as 
soon as it leaves the stack: all my 
children, then myself”

* in-order for binary trees:
DFSInorder(T):

DFSInorder(T.left)
visit T.root
DFSInorder(T.right)

“Visit my left child, then myself, then my right child”*
* can be done with a stack, but usually easier with recursive



CS61B Spring 2024

General Graph DFS Pseudocode (Recursive)

A

B

C

D

E

F

DFS(start):
preorder.add(start)
visited.add(start)
for each neighbor of start:

if neighbor not visited:
DFS(neighbor)

postorder.add(start)
return preorder, postorder

* in-order for binary trees:
DFSInorder(T):

DFSInorder(T.left)
visit T.root
DFSInorder(T.right)

“Visit my left child, then myself, then my right child”*
* can be done with a stack, but usually easier with recursive

Note: technically can add:
if start.neighbors is empty
  preorder.add(start)
  visited.add(start)
  postorder.add(start)
as base case, but the code on 
the left will skip the loop if 
neighbors is empty.



CS61B Spring 2024

Heaps

Heaps are special trees that follow a few invariants:

1. Heaps are complete - the only empty parts of a heap are in the bottom row, to the right

2. In a min-heap, each node must be smaller than all of its child nodes. The opposite is true for max-heaps.

0

5 1

7 8 2

Check! What makes a binary min-heap different from a binary search tree?



CS61B Spring 2024

Heap Representation

We can represent binary heaps as arrays with the following setup:

1. The root is stored at index 1 (not 0 - see points 2 and 3 for why)

2. The left child of a binary heap node at index i is stored at index 2i 

3. The right child of a binary heap node at index i is stored at index 2i + 1

0

5 1

7 8 2

[-, 0, 5, 1, 7, 8, 2] 

Check! What kind of graph traversal does the 
ordering of the elements in the array look like 
starting from the root at index 1?



CS61B Spring 2024

Insertion into (Min-)Heaps

0

5 1

7 8 2 -1

0

5 -1

7 8 2 1

-1

5 0

7 8 2 1

We insert elements into the next available spot in the heap and bubble up as necessary: if a node is 
smaller than its parent, they will swap. (Check: what changes if this is a max heap?)



CS61B Spring 2024

Root Deletion from (Min-)Heaps

0

5 1

7 8 2 4

4

5 1

7 8 2

1

5 4

7 8 2

1

5 2

7 8 4

We swap the last element with the root and bubble down as necessary: if a node is greater than its 
children, it will swap with the lesser of its children. (Check: what changes if this is a max heap?)



CS61B Spring 2024

Heap Asymptotics (Worst case)

Operation Runtime

insert Θ(logN)

findMin Θ(1)

removeMin Θ(logN)



CS61B Spring 2024

Worksheet



CS61B Spring 2024

1a Graph Conceptuals (T/F)

1. If a graph with n vertices has n − 1 edges, it must be a tree.

2. Every edge is looked at exactly twice in every iteration of DFS on a connected, undirected graph.

3. In BFS, let d(v) be the minimum number of edges between a vertex v and the start vertex. For any two 

vertices u, v in the fringe, |d(u) − d(v)| is always less than 2.



CS61B Spring 2024

1a Graph Conceptuals (T/F)

1. If a graph with n vertices has n − 1 edges, it must be a tree.



CS61B Spring 2024

1a Graph Conceptuals (T/F)

1. If a graph with n vertices has n − 1 edges, it must be a tree.

False. Could be disconnected.



CS61B Spring 2024

1a Graph Conceptuals (T/F)

2. Every edge is looked at exactly twice in each full run  of DFS on a connected, 
undirected graph.



CS61B Spring 2024

1a Graph Conceptuals (T/F)

2. Every edge is looked at exactly twice in each full run  of DFS on a connected, 
undirected graph.

True. The two vertices the edge is connecting will look at that edge when it’s their 
turn.

u v



CS61B Spring 2024

1a Graph Conceptuals (T/F)

3. In BFS, let d(v) be the minimum number of edges between a vertex v and the start 
vertex. For any two vertices u, v in the fringe (the fringe is a queue in BFS), |d(u) − 
d(v)| is always less than 2. 



CS61B Spring 2024

1a Graph Conceptuals (T/F)

3. In BFS, let d(v) be the minimum number of edges between a vertex v and the start 
vertex. For any two vertices u, v in the fringe (the fringe is a queue in BFS), |d(u) − 
d(v)| is always less than 2. 

True. 

[2, 2, 3, 3, 4]

added after dequeuing dist-3 node



CS61B Spring 2024

1a Graph Conceptuals (T/F)

3. In BFS, let d(v) be the minimum number of edges between a vertex v and the start 
vertex. For any two vertices u, v in the fringe (the fringe is a queue in BFS), |d(u) − 
d(v)| is always less than 2. 

True. 

[2, 2, 3, 3, 4]

added after dequeuing dist-3 node
but can’t deque dist-3 until all dist-2 
nodes done!



CS61B Spring 2024

1b Graph Conceptuals

Given an undirected graph, provide an algorithm that returns true if a cycle exists in the graph, 
and false otherwise. Also, provide a Θ bound for the worst case runtime of your algorithm.



CS61B Spring 2024

1b Graph Conceptuals

Given an undirected graph, provide an algorithm that returns true if a cycle exists in the graph, and 

false otherwise. Also, provide a Θ bound for the worst case runtime of your algorithm. You may use 

either an adjacency list or an adjacency matrix to represent your graph. (We are looking for an 

answer in plain English, not code).

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is a 

cycle.



CS61B Spring 2024

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is a 

cycle.

a b

c



CS61B Spring 2024

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is a 

cycle.

a b

c

dfs(a)



CS61B Spring 2024

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is a 

cycle.

a b

c

dfs(a) → dfs(b)



CS61B Spring 2024

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is a 

cycle.

a b

c

dfs(a) → dfs(b) → 

dfs(c)



CS61B Spring 2024

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is a 

cycle.

a b

c

dfs(a) → dfs(b) → 

dfs(c) → dfs(a)

repeat = cycle



CS61B Spring 2024

2 Fill in the Blanks

1. removeMin has a best case runtime of _____ and a worst case runtime of ______.



CS61B Spring 2024

2 Fill in the Blanks

1. removeMin has a best case runtime of Θ(1) and a worst case runtime of Θ(logN).

Best case: only one swap down is required, thus finishing in constant time
Worst case: sink down from top to the bottom. Height = Θ(logN)



CS61B Spring 2024

2 Fill in the Blanks

2. insert has a best case runtime of ______ and a worst case runtime of ______.



CS61B Spring 2024

2 Fill in the Blanks

2. insert has a best case runtime of Θ(1) and a worst case runtime of Θ(logN).

Best case: no bubbling up required
Worst case: bubble up from bottom to top. Height = Θ(logN)



CS61B Spring 2024

2 Fill in the Blanks

3. A __________ or __________ traversal on a min-heap may output the elements in 
sorted order. Assume there are at least 3 elements in the min-heap.



CS61B Spring 2024

2 Fill in the Blanks

3. A pre-order or level-order traversal on a min-heap may output the elements in 
sorted order. Assume there are at least 3 elements in the min-heap.

Any traversal must output the top node first. Only pre-order and level-order obey 
this constraint.

A

B C

A

B C



CS61B Spring 2024

2 Fill in the Blanks

4. The fourth smallest element in a min-heap with 1000 elements can appear in _____ 
places in the heap.



CS61B Spring 2024

2 Fill in the Blanks

4. The fourth smallest element in a min-heap with 1000 elements can appear in 14 
places in the heap.

second, third, or fourth level

…

min

Larger than 3 ancestors



CS61B Spring 2024

2 Fill in the Blanks

5. Given a min-heap with 2n  - 1 elements, for an element to be on the second level it 
must be less than ______ element(s) and greater than ___ element(s). 



CS61B Spring 2024

2 Fill in the Blanks

5. Given a min-heap with 2n - 1 elements, for an element to be on the second level it 
must be less than 2(N−1) − 2 element(s) and greater than 1 element(s). 

must be greater than the topmost and less than the elements in its subtree

xminus the top node, take 
only the left half, and then 
remove the node x



CS61B Spring 2024

2 Fill in the Blanks

5. Given a min-heap with 2n - 1 elements, for an element to be on the bottommost 
level it must be less than _____ element(s) and greater than ______ element(s).



CS61B Spring 2024

2 Fill in the Blanks

5. Given a min-heap with 2n - 1 elements, for an element to be on the bottommost 
level it must be less than 0 element(s) and greater than N - 1 element(s).

larger than all direct ancestors

x

…



CS61B Spring 2024

3a Heap Mystery

A

B

D E

C

F G

Initial State
[-, A, B, C, D, E, F, G]

A

E

D X

B

F G

Final State:
[-, A, E, B, D, X, F, G]



CS61B Spring 2024

3a Heap Mystery

A

B

D E

C

F G

A

E

D X

B

F G

Differences in state:
- C was removed: removeMin()
- X was added: insert(X)
- A was removed by first call to 

removeMin() and added back: 
insert(A)

Sequence of calls:
1. removeMin()
2. ___________
3. ___________
4. ___________



CS61B Spring 2024

3a Heap Mystery

A

B

D E

C

F G

A

E

D X

B

F G

Differences in state:
- C was removed: removeMin()
- X was added: insert(X)
- A was removed by first call to 

removeMin() and added back: 
insert(A)

Sequence of calls:
1. removeMin()
2. removeMin() / insert(X) 
3. removeMin() / insert(X)
4. insert(A)

insert(A)must be after all removeMin() 
– otherwise would remove A again



CS61B Spring 2024

3a Heap Mystery

A

B

D E

C

F G

A

E

D X

B

F G

Differences in state:
- C was removed: removeMin()
- X was added: insert(X)
- A was removed by first call to 

removeMin() and added back: 
insert(A)

Sequence of calls:
1. removeMin()
2. insert(X) 
3. removeMin()
4. insert(A)

insert(X)must be before removeMin, 
since it bubbles up then down - that’s the 
only way it’s able to change sides.



CS61B Spring 2024

3b Heap Mystery

A

B

D E

C

F G

Initial State
[-, A, B, C, D, E, F, G]

A

E

D X

B

F G

Final State:
[-, A, E, B, D, X, F, G]

1. X ____ D
2. X ____ C
3. B ____ C
4. G ____ X

Sequence of calls:
1. removeMin()-> A
2. insert(X) 
3. removeMin()-> C
4. insert(A)



CS61B Spring 2024

3b Heap Mystery

A

B

D E

C

F G

Initial State
[-, A, B, C, D, E, F, G]

A

E

D X

B

F G

Final State:
[-, A, E, B, D, X, F, G]

1. X ? D
2. X ____ C
3. B ____ C
4. G ____ X

X is never compared to D

Sequence of calls:
1. removeMin()-> A
2. insert(X) 
3. removeMin()-> C
4. insert(A)



CS61B Spring 2024

3b Heap Mystery

A

B

D E

C

F G

Initial State
[-, A, B, C, D, E, F, G]

A

E

D X

B

F G

Final State:
[-, A, E, B, D, X, F, G]

1. X ? D
2. X > C
3. B ____ C
4. G ____ X

At step 3, C is less than any other element 
in the heap at that time.

Sequence of calls:
1. removeMin()-> A
2. insert(X) 
3. removeMin()-> C
4. insert(A)



CS61B Spring 2024

3b Heap Mystery

A

B

D E

C

F G

Initial State
[-, A, B, C, D, E, F, G]

A

E

D X

B

F G

Final State:
[-, A, E, B, D, X, F, G]

1. X ? D
2. X > C
3. B > C
4. G ____ X

At step 3, C is less than any other element 
in the heap at that time.

Sequence of calls:
1. removeMin()-> A
2. insert(X) 
3. removeMin()-> C
4. insert(A)



CS61B Spring 2024

3b Heap Mystery

A

B

D E

C

F G

Initial State
[-, A, B, C, D, E, F, G]

A

E

D X

B

F G

Final State:
[-, A, E, B, D, X, F, G]

1. X ? D
2. X > C
3. B > C
4. G < X

X must stay under G at step 2, so that we can swap it to the top at step 3 
during the remove, where it then bubbles down.

insert(X)

Sequence of calls:
1. removeMin()-> A
2. insert(X) 
3. removeMin()-> C
4. insert(A)



CS61B Spring 2024

3b Heap Mystery

A

B

D E

C

F G

Initial State
[-, A, B, C, D, E, F, G]

Sequence of calls:
1. removeMin()
2. insert(X) 
3. removeMin()
4. insert(A)



CS61B Spring 2024

3b Heap Mystery

G

B

D E

C

F

Sequence of calls:
1. removeMin()
2. insert(X) 
3. removeMin()
4. insert(A)



CS61B Spring 2024

3b Heap Mystery

C

B

D E

G

F

Sequence of calls:
1. removeMin()
2. insert(X) 
3. removeMin()
4. insert(A)



CS61B Spring 2024

3b Heap Mystery

C

B

D E

G

F

Sequence of calls:
1. removeMin()
2. insert(X) 
3. removeMin()
4. insert(A)

X



CS61B Spring 2024

3b Heap Mystery

X

B

D E

G

F

Sequence of calls:
1. removeMin()
2. insert(X) 
3. removeMin()
4. insert(A)



CS61B Spring 2024

3b Heap Mystery

B

X

D E

G

F

Sequence of calls:
1. removeMin()
2. insert(X) 
3. removeMin()
4. insert(A)



CS61B Spring 2024

3b Heap Mystery

B

E

D X

G

F

Sequence of calls:
1. removeMin()
2. insert(X) 
3. removeMin()
4. insert(A)



CS61B Spring 2024

3b Heap Mystery

B

E

D X

G

F

Sequence of calls:
1. removeMin()
2. insert(X) 
3. removeMin()
4. insert(A)

A



CS61B Spring 2024

3b Heap Mystery

B

E

D X

A

F

Sequence of calls:
1. removeMin()
2. insert(X) 
3. removeMin()
4. insert(A)

G



CS61B Spring 2024

3b Heap Mystery

A

E

D X

B

F

Sequence of calls:
1. removeMin()
2. insert(X) 
3. removeMin()
4. insert(A)

G

Final State:
[-, A, E, B, D, X, F, G]


